Challenges With Part Formability, Spring back Compensation, Yield Improvements & Product design Support

> By Godrej Tooling Sameer Chudnaik & Rajesh Patole

ISFT – 2020 – 22 January 2020, Bangalore, India.

TOOLING

Challenges During Formability Analysis

<u>SGM - TRUNK</u>

Material: GMW-2M-ST-S-CR4 (310MPa)

Thickness : 0.65 mm

<u>Die Process -</u> OP10 – Draw OP20 – Trim, C' Trim, Pierce, C'Pierce OP30 – C' Trim, C'Pierce, OP40 – Pi, Flange, C'Pierce, C'Trim

Challenges During Formability Analysis

Process as Follows

<u>OP10 - DRAW</u>

<u>OP30 – C'PIE, C'TRIM</u>

ISFT – 2020 – 22 January 2020, Bangalore, India.

OP20 – PIE, C'PIE, TRIM, C'TRIM

Sagging Of Blank due to Gravity

Blank Holder Closing

Result : Sagging resulted in waves, which results in heavy wrinkles

Option Tried 01 : Punch Support Given To Blank While Closing

Result : Blank Holder Curvature results in wrinkles.

Option Tried 02 : Single Curved Blank Holder Shape made

Result : Single Curved Blank Holder resulted in lower yield. (More Blank Size Required)

Option Tried 03 : Double curved Blank Holder Shape made. (same as component profile)

Result : Wrinkles are seen which are affecting formability

Option Tried 04 : Fold Away Tools added with Rectangular Blank and Punch Support.

Result : Cracks observed due to rectangular blank

Option Tried 05 : Fold Away Tools added with Trapezoidal Blank and Punch Support.

Result : Formability is OK

Springback Compensation Statergy

Springback Compensation - Results Comparison

Springback Compensation - Results Comparison

Wrinkles Observed during trial

Wrinkles Observed during trial

Beads were removed during trial

- Proved the process virtually first with the help of simulation software (Auto Form).
- Done nearly 60 iterations to virtually prove the part.

• Cutting on only one side of die for better scrap flow & die strength

- Process improvement
- Incorporation of flange up process

Learning's / Benefits

Use of fold away tools, addressed concern of folding during drawing

• Re strike flange to be preferred over wiping flange

Improvement in part yield

	For existing dies for same model	Made by Godrej Tooling
Blank size	Trapezoidal Blank	Trapezoidal Blank
Blank surface area	1133262 mm2	976950 mm2
Blank Weight	5.79 Kg	4.99 Kg
Part surface area (With Holes)	679773 mm2	679773 mm2
Yield % (With Holes)	59.98 %	69.60 %
Part surface area (Without Holes)	763460 mm2	763460 mm2
Yield % (Without Holes)	67.37 %	78.20 %

Improved part yield as compared to existing dies = 10.83 %

Sheet steel saved / Blank = 0.8 Kg For 10 Lacks parts = 0.8 x 10,00,000 = 80,000 Kg steel saved.

New Technologies - Advanced Spring-back Compensation

ISFT – 2020 – 22 January 2020, Bangalore, India.

/ TOOLING

- > Proved the process virtually first with the help of AutoForm.
- > Done nearly 60 iterations to virtually prove the part.
- > De-Risking done by keeping provision for re-cut of dies.
- > Able to dispatch First level accuracy parts with laser cut samples.
- Re-Cut of dies not required, as T0 to Final quality maturity part produced with die spotting by minimum manual work.
- Reduced lead time for T0 to Final Quality maturity part as re-machining of dies not required.

Quality Improvement through feature addition

Final Spring-back Result

Final Spring-back after compensation is within range of +1.3 mm to -0.7 mm. GTD will further optimize the results during trials.

-15.3 mm

Quality Improvement through feature addition

Main focus on addition of features in component to control / minimize the springback rather than compensating the springback.

Along with other options we have used same option in GE Stamp B Pillar project to control springback form 19mm to +/-0.8mm in mating zones.

addition of features

Product design Support & Yield Improvements

ISFT – 2020 – 22 January 2020, Bangalore, India.

TOOLING

Product Design Inputs For Formable Components

Result : Component cracks with both the options.

Product Design Inputs For Formable Components

Product Design Inputs For Formable Components – Hero Motors

Initial data by HMCL

Data Comparison HMCL & Godrej

Modified data by HMCL

Cracks in initial part data

Modified data by Godrej

Optimized results with GTD modified part data

Product Design Inputs For Formable Components - TVS

Product Design Inputs For Formable Components - TVS

Suggested product changes to control wrinkle and folds.

Product Design Inputs For Formable Components - TVS

ISFT – 2020 – 22 January 2020, Bangalore, India.

🖊 | TOOLING

<u>Yield Improvements – M&M</u>

ECR Required - 03

/ TOOLING

Yield Improvements – Magna Cosma / Ford

Material saving per set = 0.86 Kg Life of a die set for part production = Approx. 10.00,000 nos (One million)

Material Cost saving / million parts (As per GTD process) = 0.86 Kg x Rs 60 per Kg x 10,00,000 = 5,16,00,000 (5.16 Cr Rupees)

Saving 8,60,000 Kg Steel for lifespan

ISFT – 2020 – 22 January 2020, Bangalore, India.

	Magna Dieface	GTD Dieface
Blank Size	680 x 570 x 1.6 Thk	665 x 480 x 1.6 Thk
Yield	44 %	53.5 %

Issues with Customer die - Part is having heavy wrinkles

- 1. Part is proved by resolving all issues in part
- 2. GTD has improved yield by 9.5%

Yield % (With Holes):- 43.4%

Material saving per set = 0.48 Kg Life of a die set for part production = Approx 10,00,000 nos. (One million)

Saving 4,80,000 Kg Steel for lifespan

ISFT – 2020 – 22 January 2020, Bangalore, India.

Yield % (With Holes):- 51.1%

With option 2:- GTD has improved yield by 7.7%

Option -1

Blank surface area 71675 mm2 (For 1 part)

Draw die face design for one part

Yield % (With Holes):- 52%

Material saving per set = 0.15 Kg Life of a die set for part production = Approx 10,00,000 nos. (One million)

Saving 1,50,000 Kg Steel for lifespan

ISFT – 2020 – 22 January 2020, Bangalore, India.

Option -2

Blank surface area:- 133000mm2(For 2 part) i.e. 66500mm2/ part

Draw Die face design for two part

Yield % (With Holes):- 56%

With Option 2:- GTD has improved yield by 4%

Option -1

Blank size:- 563 X 790 X 0.65 for 2 part

Die face with 2 part out option

Yield %:- 71.2%

Material saving per set = 0.19 Kg Life of a die set for part production = Approx 10,00,000 nos. (One million)

Saving 1,90,000 Kg Steel for lifespan

ISFT – 2020 – 22 January 2020, Bangalore, India.

Option -2

Blank size:- 1080 X 790 X 0.65 for <u>4 part</u>

Die face with 4 part out option

Yield %:- 75.6%

With option 2:- GTD has improved yield by 4.4%

GODREJ TOOLING Introduction

Line Of Businesses

Press Tools Business Portfolio – Two Wheelers

ISFT – 2020 – 22 January 2020, Bangalore, India.

TOOLING

Infrastructure - Tryout

Press Tool Assembly

Team

- Toolmakers 60
- Managers 5
- Contract 6 (working in 2 Shifts)

Stamping Tryout

Tryout machines

- Erfurt 800 T Mechanical Press 2
- HPM Hydraulic Press 1
- Spotting Press 2

GT Capabilities – HSS parts – Current / Projected

Parts	

Steel Categories		GTD's Presense	Tensile Strength (Mpa)	Parts
	Commertial Grade steel	Already present		
HSS	High strength steel (325 to 590 Mpa)	Started	325 to 400 Mpa	
			400 to 590 Mpa	
			400 to 590 Mpa	
AHSS	Advance high strength steels (590 to 1000 Mpa)	Aming at	590 to 1000 Mpa	
SSHN	Ultra high strength steels (>1000 Mpa)	Presently not in strategy	1000 Mpa and above	

Reduction in energy consumption Reduction in Sp. Water Consumption Water positive Zero Waste to landfill Waste generation reduction Reduction in Hazardous & Non. Hazardous Waste Emphasises on Green Product right from design stage till it is in usage Ensures all its products are environment compliant

THANK YOU FOR YOUR TIME AND CONSIDERATION.

Questions ?

