Aggressive Light-weighting through use of Composites

Dr. Asim Tewari Chair professor, Department of Mechanical Engineering IIT Bombay

Asim Tewari, IIT Bombay

QS World University Rankings Indian Institute of Bombay, Mumbai India

Faculty 640+ Full time 40+ (Adj. & Vis) Academic Units 15 Departments 19 Centres, 4 IDPs, School

Infrastructure State-of-the-art research facilities

R&D Funding (14-15) ~ \$ 50M

IIT Bombay

A Quick Glance

Support Staff 1250+ PhD 130+

Students Total ~ 10,000 (55% P.G., PhD~3000) Publications /year~ 1500 Patents filed/year~130

> Project Staff 1300

Composites Technology Research center

Asim Tewari, IIT Bombay

Machining Technology Research

Asim Tewari, IIT Bombay

Smart Factory: Data Analytics and IoT Research

Asim Tewari, IIT Bombay

....

Monitor equipment

Machine Learning Capabilities at NCAIR

Information-based Learning

- Decision Trees
- Shannon's Entropy
- Information Gain

• Similarity-based Learning

- Feature Space
- Distance Metrics
- Probability-based Learning
 - Naïve Bayes Model
 - Markovian model

• Error-based Learning

- Multivariable Regression
- Linear discriminate analysis
- Multinomial Logistic Regression
- Support Vector Machines
- Expert-system based learning
- Deep Learning
 - Convolutional neural network
 - Recurrent neural network

Data Analytics is the discovery, interpretation, and communication of meaningful patterns in data.

ADDITIVE SUBTRACTIVE MANUFACTURING (ASM)

•

Additive Subtractive Machine (ASM)

Hardenss variation from top to Bottom

Major challenges

- Optimal partdecomposition
- Slicing and build orientation
 - geometric complexity, cutting tool accessibility
 - multi-bridged structures
 - overhangs
 - Part distortion
 - Non-uniform & anisotropic properties

Facilities

- In-house hybrid M/C(5axis+MIG weld)
- 2. EOS M 280 Build volume 250 mm x 250 mm x 325 mm

Replacement of Horses by Tractors in US farms

Lithium-ion Battery Prices

Volume weighted average battery pack fell 85% from 2010-18

Lithium-ion battery price survey results: volume-weighted average Battery pack price (real 2018 \$/kWh)

Source: BloombergNEF

Lithium-ion Battery Prices

For every doubling of cumulative volume there is an 18% reduction in price

Lithium-ion battery price outlook

Source: BloombergNEF

Automotive Technology options

Weight Reduction Benefits Automotive sector

Internal Combustion powered vehicle

- 10% weight reduced => 6–8% improve fuel economy
- Lower CO2 emissions

Battery-powered vehicle

10% weight reduced => 10% increase in range

Mass De-compounding

- Lighter body requires smaller powertrain
- This requires smaller suspension
- This requires smaller braking system
- All these further reduce weight and the mass gets de-compounded

1

CO2 reduction per kilogram saved

Ref: ifeu-Energy savings by light-weighting -2016

Life-time CO2 savings

Well-to-Tank analysis

	Well-to-Tank CO2				
Gasoline (EN 16258)	0.46 kg CO ₂ /l				
Diesel (EN 16258)	0.56 kg CO ₂ /l				
Electricity (EU28)	0.47 kg CO ₂ /kWh				
Electricity (China)	1.10 kg CO ₂ /kWh				
Electricity (Norway)	0.01 kg CO ₂ /kWh				

Ref: ifeu-Energy savings by light-weighting -2016

On the choice of structural materials

Force F, Displacement δ , Mass M, Stiffness (Young's) Modulus E, Mass Density ρ , Yield Strength σ_{γ}

Reduction in density will have the highest impact for plates

Material in Typical US vehicle

Asim Tewari, IIT Bombay

Necessity of a portfolio approach to structural materials

Material	Density ρ (g cm ⁻³)	Young's Modulus E (GPa)	Strength σ_{γ} (MPa)	Fracture Toughness K_{IC} (MPa m ^{1/2})	E/ρ Ties	$E^{1/2}/\rho$ Beams	$E^{1/3}/\rho$ Plates	σ_{γ}/ρ Spec. Strength	Cost \$US/lb
Steel (AHSS>550 MPa)	7.8	207	400-1000	180-30	27	1.8	0.76	50-130	0.50
Al alloys	2.8	71	50-600	50-20	25	3.0	1.5	20-215	1.00
Mg alloys	1.8	45	70-300	30-10	25	3.7	1.95	40-170	1.50
Titanium	4.5	104	925	50	23.1	2.26	1.0	205	10.00
Epoxies [TS]	1.2-1.4	2.1-5.5	40-85	0.6-1.0 (20°C)	1-5	1-2	1-1.5	28-70	1.00
Polyesters [TS]	1.1-1.4	1.3-4.5	45-85	0.5 (20°C)	1-4	1-2	1-1.5	32-75	1.00
Polypropylene [TP]	0.91	1.2-1.7	50-70	3.5 (20°C)	1-2	1-1.4	1-1.3	55-77	1.00
CFRP, 58% uniaxial C/epoxy	1.5	189	1050	32-45	126	9	3.8	700	6.00 (500 in 1960)
GFRP, 50% uni- axial glass polyester	2.0	48	1240	42-60	24	3.5	1.8	620	1.20

• Mg alloys: creep and corrosion problems. Al: excellent on corrosion, creep can be a problem (all yellow entries).

Polymer composites are stiff, strong, corrosion and fatigue resistant, generally recyclable (especially polypropylene-based TP's), but can be expensive (low investment, high piece cost, especially carbon fibers), poor in compression, and prone to creep; forming and surface quality can be problematic. Claddings and fascias often do not require high tensile strength and may require a low flex modulus. [TS: Thermoset; TP: Thermoplastic]

Advanced Composite Materials

Advantages

- 50 to 65% reduction in weight
- Crashworthy
- Design Flexibility
- Durability
- Manufacturing ease
- Disadvantage
 - Cost

Composite Market growth

Note e-estimated; p-projected.

Carbon fiber market

		CAGR 11.0%
		 The carbon fiber market is expected to grow from USD 4.7 billion in 2019 to USD 13.3 billion by 2029 at a CAGR of
		11.0% during the forecast period.
HSD	1150	 The market growth is attributed to the increased demand for carbon fiber from CNG and hydrogen cylinders, electric cars and rising commercial aircrafts production.
4.7 Billion	13.3 Billion	 Europe is expected to be the largest market for carbon fiber owning to its growing aerospace & defense, automotive and
2019-е	2029-p	wind energy industry.

Note: e= estimated; p= projected.

Carbon fiber market

AstroaTionation dos Resaledecoming competitive and cost effective. http://www.infosys.com.

Compression Molding

Resin Transfer Molding

Pultrusion

Thermoplastic Stamping

Nanocomposites: summary of tangible benefits

- Mass savings up to 21%
 - Specific gravity of 0.92 vs.
 0.96-1.13 g/cm³
 - Lighter weight reduces cost and requires less adhesive for attachment

Improved appearance

- Sharper feature lines & grain patterns
- Improved scratch/mar performance
- No fiber read-out
- Improved colorability & paintability

- Large processing window
 - Enhanced shear thinning, melt elasticity and processability
 - Consistent physical and mechanical properties

Reduced Paint Delamination

- Increased cohesive strength
- Retains low temperature ductility
- Improved recyclability
- Lower flammability

Material in Typical US vehicle

Asim Tewari, IIT Bombay

Nanocomposite Applications

- GM: > 1 M lbs PP based nanomaterials
 Exterior: H2SUT trims around cargo, spoiler on STS-V
 - Interior: Center consol of Saturn Vue, HHR
- **Toyota:** Nylon nanocomposite for under hood application
- Honda: PP based nanomaterial for seat back in Acura TL
- Nissan: Carbon nanotube reinforced materials in fenders of XTrail

Application Opportunities: Semi-Structural

- Exterior Trim
 - Fascia, Rockers, Side Trim, Grilles, Hood Louvers
- Interior Structure and Trim
 - Instrument Panels, Seat/IP Foams, Door Inners, Trim –
 i.e., Pillar Covers,
- Body Panels
 - Vertical and Horizontal Body Panels, Closure Panels
- Underhood
 - Engine Shields, Fan Shrouds, Air Intakes
- Fuel System
 - Fuel Tanks, Fuel Lines

In summary

Change is the only constant

Adaptation is the only resort

India Institute of Technology Bombay, Mumbai INDIA

