

Andreas Sterzing

Innovation in Forming Technology – Solution Potentials of Future Challenges

Focus: Realization of Powertrain Components

Bangalore, January 22th 2020

Fraunhofer

Table of Content

- **1** Introduction
- 2 Relevance for Production / Forming Technologies
- 3 Efficiency Increase in Product Operation
- 4 Efficiency Increase in Product Manufacturing
- 5 Industry 4.0 Relevance for Forging Industry

Table of Content

1 Introduction

- 2 Relevance for Production / Forming Technologies
- 3 Efficiency Increase in Product Operation
- 4 Efficiency Increase in Product Manufacturing
- 5 Industry 4.0 Relevance for Forging Industry

1 Introduction

Production-Relevant Megatrends (selected)

large social, economic, political and technological changes (John Naisbitt)

Rising world population

- markets in growth regions
- growing demands

Demographic development

- aging of population

down aging

(changing working conditions)

Individualization

- individual, user-specific products
- complex products / production processes

<u>Sustainability</u>

- efficiency in product realization / operation
- shortage of resources
- reduction of emissions

Urbanization

- mobility
- living <u>and</u> production in mega cities

Globalization

- products / technologies for global markets
- global standards

Table of Content

1 Introduction

2 Relevance for Production / Forming Technologies

- 3 Efficiency Increase in Product Operation
- 4 Efficiency Increase in Product Manufacturing
- 5 Industry 4.0 Relevance for Forging Industry

© Fraunhofer IWU

→ Alternative Process Routes

\rightarrow shortening / optimization

(e. g. use of net-shape technologies)

→ Process Safety / Stability

- → virtual process development
- → process monitoring / influencing / control
- → Flexibility (process, tool, machine)

not only in automotive industry

- rail vehicle industry
- aircraft industry
- shipbuilding -

Rotorblatt

Lade Wellen

Bremse

Nahe

- construction vehicles
- agricultural machines -
- power generation

. . .

Relevance for Production / Forming Technologies 2

Efficiency is becoming increasingly important.

- **Efficiency Increase in Product Operation** \succ
 - reduction of energy use
 - reduction of emissions

→ Lightweighting

→ Influencing of Part Characteristics (incl. material design)

Efficiency Increase in Product Manufacturing

- reduction of resource use (material, energy, time, human, ...)

Stellmotor

Tragstruktur

Generator Kühluna

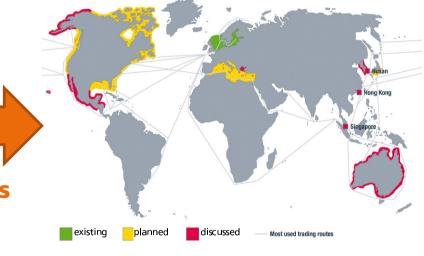
Wärmetauscher

Table of Content

- **1** Introduction
- 2 Relevance for Production / Forming Technologies

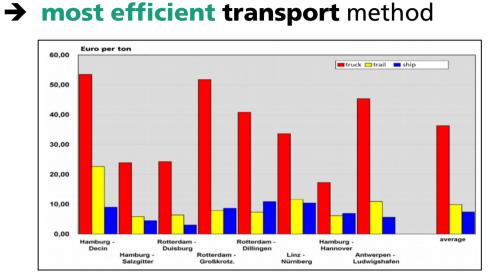
3 Efficiency Increase in Product Operation

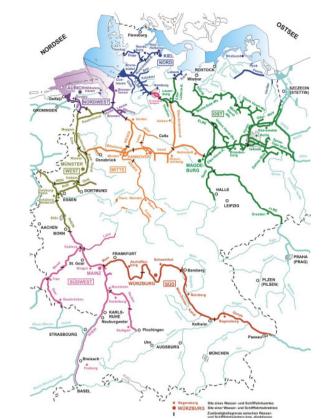
- 4 Efficiency Increase in Product Manufacturing
- 5 Industry 4.0 Relevance for Forging Industry


Today's Situation

- world fleet (approx. 90 000 ocean-going ships)
 - \rightarrow 370 mio. tons fuel (mostly heavy oil)
 - \rightarrow emission
 - sulphur oxides SO_x 13 % (20 mio. tons)
 - carbon dioxide **CO₂ 3 %**
 - nitrogen oxides NO_x 15 %
 - sooty particles
 - fine dust

Challenges


- significant reduction of emissions
- establishment of ECAs (emission controlled areas)
- ➢ implementation of emission standards TIER I...III
 → soot, NO_x
 TIER IV (from 2020) → additionally SO_x



Potentials of Inland Water Transportation

comparison of transport costs

→ reduction of emissions

waterways (Germany)

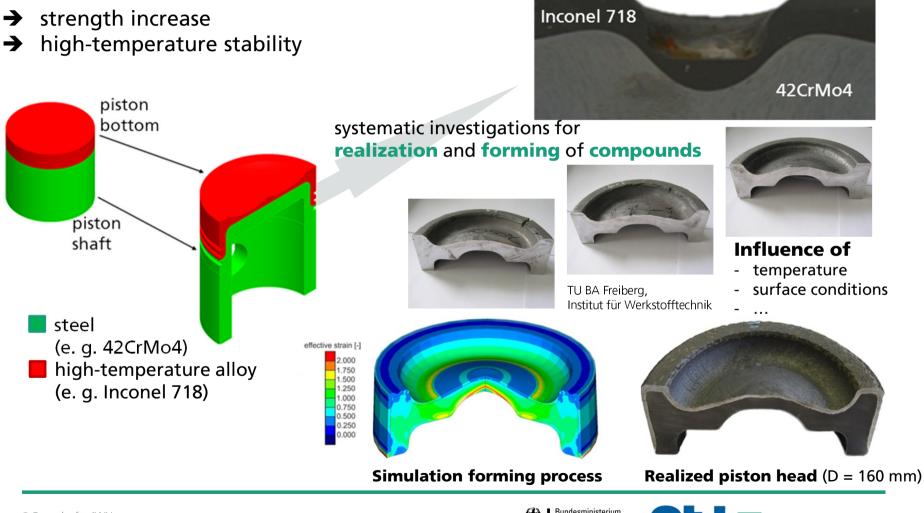
Approach / Promising Measures

- optimization of combustion behaviour
 - → increase of combustion temperature ($\vartheta = 500^{\circ}C \rightarrow \vartheta = 650^{\circ}C$)
 - average cylinder **pressure** (p = 25 bar $\rightarrow p = 40$ bar)
 - → increase of thermal and mechanical loading of engine components
 - → use of new material compounds for valves and pistons (e. g. steel + Nimonic / Inconel)
 - strength increase
 - high-temperature stability
- lightweighting
 - → alternative part design (e. g. hollow shafts)
 - → feasibility
 - → efficient **component realization**
 - \rightarrow technology readiness level / series capability

Enabler (efficient component realization)

- innovative manufacturing / forming processes
- > alternative **process routes** (e. g. forming-based)

source Hyundai Heavy Industries



source Getriebetechnik Dessau GmbH

Use of Innovative Material Compounds for Piston Head

(in consideration of higher temperatures and pressures in the combustion chamber)

© Fraunhofer IWU

Bundesministerium für Wirtschaft und Technologie

Use of Innovative Material Compounds for Piston Heads

(in consideration of higher temperatures and pressures in the combustion chamber)

Summary / Conclusions

- Development, application and optimization of efficient process route for hybrid piston heads using innovative material compound
 - compound realization
 - forming of compound
 - part finishing
- Proof of **feasibility**
- Guarantee of required part characteristics
 e. g. resistance against high thermal and dynamic loading
- Transferability of method for other components e. g. valves

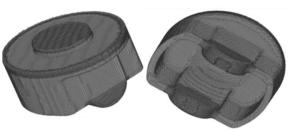
Lightweight Piston Based on Innovative Process Combination (lower part)

→ Casting + Forging → resource efficiency û (time, material, energy) → geometrical part complexity û → realization of appropriate

Innovation property gradients (inhomogeneous loading) heat treatment (optionally) forging casting forging heat (near-net-shape) treatment (optionally) forming heat semi-finished State-of-the-art treatment product ingot metallurgy casting

Lightweight Piston Based on Innovative Process Combination (lower part)

- → Casting
 - → scaled demonstrator components
 - \rightarrow derivation of **two different variants** (cast pre-forms) from selected piston design - piston loading (lower part) considering
 - subsequent forging process

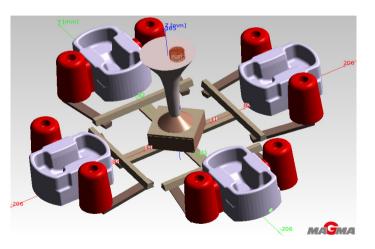

→ design of **casting system**

four cavities in one mould for systematic parameter investigation

\rightarrow cast trials

 $\vartheta_{\text{casting}} = 1630 \text{ °C}$ +/- 15 K

- casting requirements



Variant 1

Variant 2

Lightweight Piston Based on Innovative Process Combination (lower part)

→ Forging

- → realization of **forging tool** (design, construction, testing)
- \rightarrow forging trials

 $\vartheta_{\text{forging}} = 1100 \text{ °C}$

complete mould filling using variant 1

Lightweight Piston Based on Innovative Process Combination (lower part)

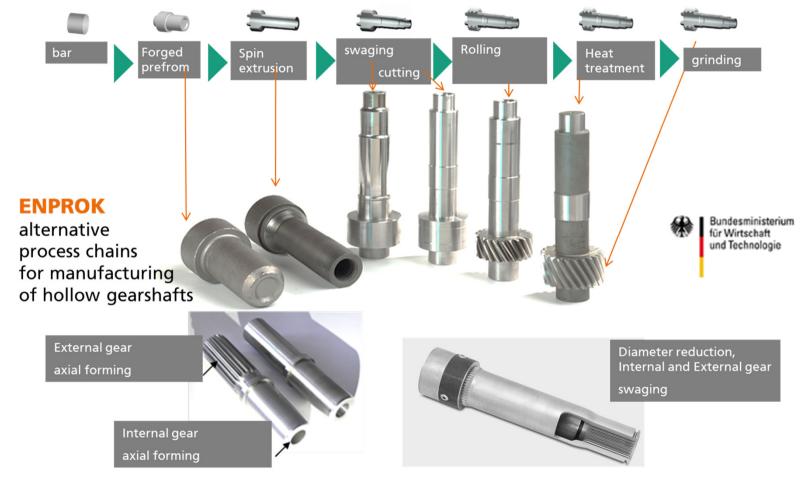
Summary / Conclusions

- → combination of advantages of both technologies
 - → design freedom of casting
 - → **strength increase** based on forging
- → completely new possibilities for lightweighting
- → significant **resource saving** along the entire process route

Next Steps

- → realization of lower part for a **real piston** (D = 160 mm)
- optimization of casting process
 (accelerated solidification for microstructure refinement)
- ➔ realization of complete piston consisting of
 - hybrid piston head
 - lightweight lower part

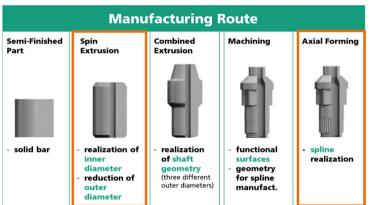
Forming-Based Process Route for Hollow Gear Shafts


Initially Situation (focus: automotive powertrain)

MACHINING (State of the art):	
Solid bar Forging Deep hole drilling Cutting	Gear hobbing, Deburring
Solid bar (smaller) Forging Cross Wedge Rolling Spin extrusion extrusion Cross wedge rolling	Gear rolling, Axial Forming
Focus: forming processes Holistic Approach: from pre-formingfinishing	

Forming-Based Process Route for Hollow Gear Shafts

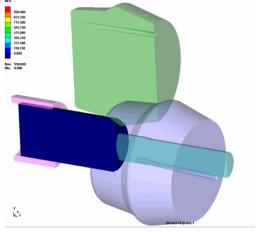
Initially Situation (focus: automotive powertrain)

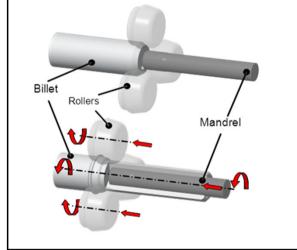

Forming-Based Process Route for Hollow Gear Shafts

Initially Situation (focus: automotive powertrain)

Example: Output Shaft – Achieved Effects

- **part weight** ↓ (- 22 %)
- power density ① (+ 28 %)
- **material use** 4. (- 36 %)
- new fixing concept
 - → reduction of notch effect
 - \rightarrow improvement of bevel gear centering
- staged design
 - → improved assembling conditions for bevel gear
- elimination of hardening process
 - \rightarrow hardness \hat{v} in spline section (+15 %)




Forming-Based Process Route for Hollow Gear Shafts

Spin Extrusion – Realization of Hollow Preform

Principle

- realization of hollow parts based on a combination of backward cup extrusion and flow forming
- realization of **inner profiles** or shaft shoulders
- incremental forming process
- depending on material
 - \rightarrow cold or temperature-supported forming process

- axial punch clamping
- alignment of rolls to punch
- synchronous rotation of rolls and punch
- synchronous axial feed of rolls

→ material flow in opposite direction

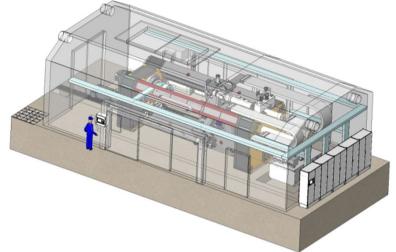
Forming-Based Process Route for Hollow Gear Shafts

Spin Extrusion – Technology Adaption

large shafts

(I_{max} \approx 2000 mm; D_{max} \approx 600 mm)

- **ship** industry
- **aircraft** industry
- energy generation
- commercial vehicles


Objectives

- technology development
- development / realization of special purpose (test) machine

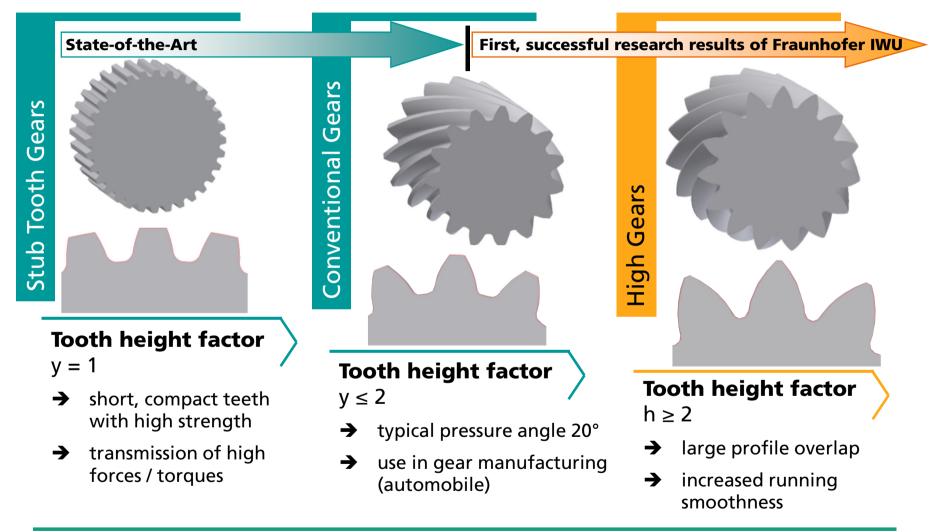
Current Status

start-up of test machine

Construction of test machine

Table of Content

- **1** Introduction
- 2 Relevance for Production / Forming Technologies
- 3 Efficiency Increase in Product Operation


4 Efficiency Increase in Product Manufacturing

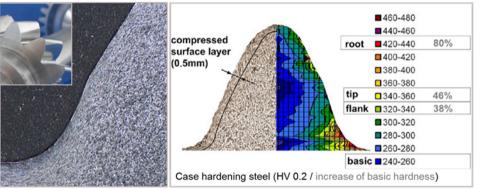
5 Industry 4.0 – Relevance for Forging Industry

Temperature-Supported Gear Rolling

Process Development

Temperature-Supported Gear Rolling

Process Sequence (conventional)



Temperature-Supported Gear Rolling

Advantages

→ <u>Process</u>

- shortening of process time (up to 50%)
- material saving
 (no chips → up to 30 %)
- low forming forces
 - (incremental forming)

Improvement of part characteristics (based on forming process)

→ Component

- strain hardened surface layer
- contour related fibre orientation (no separated)
- higher contour stability after hardening
- high tooth root strengths / flank load capacity
 - **surface roughness** (R_a = 0.2 ... 0.5 μm / R_z = 1.4 ... 3 μm)

4 Efficiency Increase in Product Manufacturing Temperature-Supported Gear Rolling

Challenges

- I **Tool** Optimization
 - ➔ loadings (bending)
 - → life time

II Extension of Process Limits

- ➔ part spectrum
 - "new", high-strength materials
 - \rightarrow compact gears
 - increasing modules
 - (m = 8 mm...12 mm)
 - gear size
- III Improvement of Part Quality
 - improvement of quality parameters (dimensions, geometry)
 - acoustic behaviour
- **IV Process Integration**

use of **temperature** as **process parameter** $\vartheta_{rolling} \approx 1000^{\circ}C$



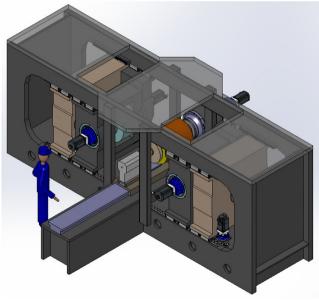
Temperature-Supported Gear Rolling

Research Focus

- process development / optimization
- proof of **feasibility**
- improvement of part quality
- achievement of **series capability**

Geared Shaft 20MoCr4 Da = 108,25 mm m = 4,5 mm z = 22

4 Efficiency Increase in Product Manufacturing Temperature-Supported Gear Rolling

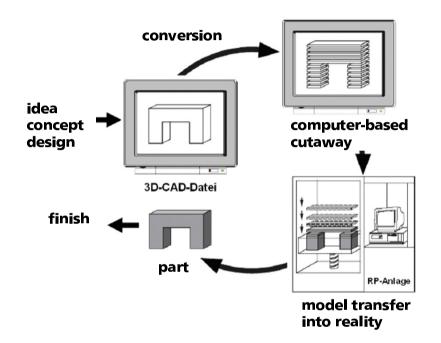

Technology Adaption

large gears (D_{max} ≈ 1000 mm)

- energy generation
- **ship** industry
- commercial **vehicles**

Foci

- technology development
- development and realization of test machine



Potentials of Additive Manufacturing for Forming Processes

Introduction

principle of additive manufacturing process

source Gebhardt, A.: Generative Fertigungsverfahren

 additive [from Latin] – to add, to join; in this case: building up,
 e. g. layer by layer, additive

Rapid Prototyping (RP): additive generation of parts with limited functionality (prototypes, test parts)

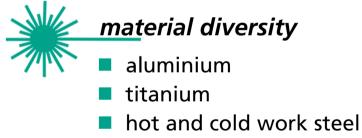
Additive Manufacturing (AM): additive manufacturing of end products / series parts

Rapid Tooling:

use of additive methods and processes for tool and die making

Potentials of Additive Manufacturing for Forming Processes

Advantages



- no job preparation / technology planning
- single step process

freedom of shape

- any complex geometries
 - undercuts
 - internal geometric shapes
 - delicate structures
 - geometries not producible by conventional manufacturing methods

nickel-based alloys (Inconel)

<u>ligh</u>tweight design / bionics

- hollow and lattice-like structures
- 100 % topology optimized parts
- bionic structures
- structures with graded porosity

4 Efficiency Increase in Product Manufacturing Potentials of Additive Manufacturing for Forming Processes

Advantages

- Realization of any complex part structures that are conventionally not realizable e. g. by casting, cutting, forming, ... (or only with high manufacturing effort)
- Realization of **bionically inspired products**
 - → maximum lightweight effects
- > Highest flexibility

bracket prototype (stainless steel) Source: EOS, EADSs

nacelle hinge bracket (titanium) Source: EOS, EADSs

4 Efficiency Increase in Product Manufacturing Potentials of Additive Manufacturing for Forming Processes

Competition with Forging Technology

Statement during FIA Fall Meeting 2013

San Antonio, October 21-23, 2013 Workshops on the topic "Future Challenges"

Additive Manufacturing

"...one of the **most important competitive manufacturing technologies** for the **American Forging Industry** in the future..."

Potentials of Additive Manufacturing for Forming Processes

Rapid Tooling

Example Rapid Tooling

Efficiency increase in prototype realization \rightarrow approach: realization of forming tools by additive manufacturing

Potentials

- realization of any **complex geometries** e.g. undercuts, delicate geometry areas
- material diversity (for forming tools)
- NC programming conditionally required

Challenges (Today)

- surface quality
 - material (powder) costs
 - manufacturing time and costs

4 Efficiency Increase in Product Manufacturing Potentials of Additive Manufacturing for Forming Processes

Alternative Process Routes – Process Combination

> additive manufacturing

- → realization of pre-form
 - load-adapted, complex part design
- **forming** (e. g. forging)
 - → realization of final **geometry**
 - \rightarrow guarantee and improvement of **part characteristics**
 - e.g. density 12 (globally, locally)
 - strength 1 (globally, locally)

topology

analysis/

optimization

re-design

- ⇒ tailored, graded properties
- ⇒ further lightweight effects

aircraft door component

determination of CAD data (part scanning)

> part finishing

 \rightarrow surfaces

additive manufacturing

part scanning

© Fraunhofer IWU

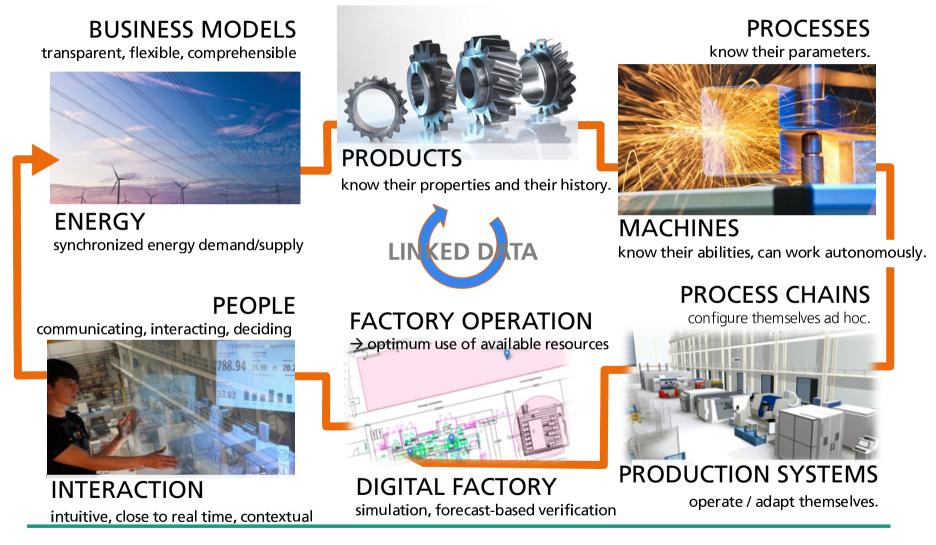

Fraunhofer

Table of Content

- **1** Introduction
- 2 Relevance for Production / Forming Technologies
- 3 Efficiency Increase in Product Operation
- 4 Efficiency Increase in Product Manufacturing
- 5 Industry 4.0 Relevance for Forging Industry

X Industry 4.0 – Relevance for Forging Industry Data-Driven Intelligent Production

© Fraunhofer IWU

Fraunhofer

5 Industry 4.0 – Relevance for Forging Industry Process Monitoring, Influencing and Control

Challenges

"New" Materials

e.g. characterized by limited formability and/or high strength

e.g. demands on

microstructure

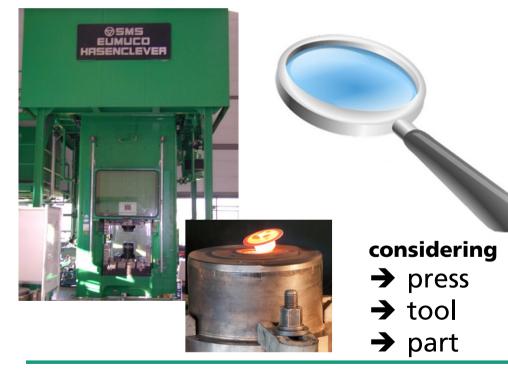
Part Complexity û

Part Quality û

e.g. dimensional tolerances

Increase of Efficiency

- costs 🖓
- resource use \mathbb{Q}
- e.g. minimization of
 - \rightarrow scrap
 - \rightarrow rework
 - \rightarrow try-out


monitoring / sensing strategy for forging processes

5 Industry 4.0 – Relevance for Forging Industry Process Monitoring, Influencing and Control

Challenges

- → information about
 current forming process
 - process result / forged part (e. g. dimensions, failures, etc.)
 - tool wear / wear development

- relevant parameters
 - → description of process status
 - \rightarrow related to part quality
- suitable sensors for data acquisition
 - → robustness/reliability
 - \rightarrow costs
 - \rightarrow maintenance
 - → capability for industrial application

- data processing

- \rightarrow derivation of information
- → basis for process control / closed-loop control

X Industry 4.0 – Relevance for Forging Industry

Process Monitoring, Influencing and Control

<u>Foci</u>

MACHINE

- process parameters (provided)
- machine / component

conditions

→ predictive maintenance

SEMI-FINISHED PRODUCT

- geometry / dimensions
- properties / microstructure conditions
- temperature (heating process)

TOOLING

- tool loading
- tool / component conditions
- **wear** situation / development
 - \rightarrow predictive maintenance

NEED FOR ACTIVITIESidentification of relevant

parameters

- (related to process status / part quality)
- suitable sensors for data acquisition (robustness, reliability, costs, ...)
- data processing

FORGED PART

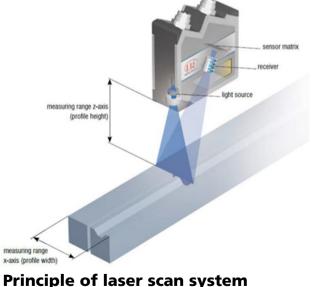
geometry / dimensions / quality features properties / microstructure

PROCESS

- process parameters (acting)
- \rightarrow expected process result
- process-related information
 - ightarrow basis for closed-loop control

Measurement of Hot Forgings

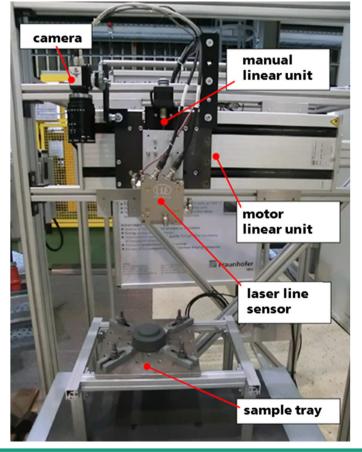
State-of-the-Art


- ➔ up to now
 - three-dimensional measurements of complex formed parts / geometries
 - → maximal v ≈ 200 °C (castings, forgings, moldings)
- → "hot" parts and components
 - → laser measurement, particularly laser triangulation (bars, tubes, slabs, thick plates)
- → not existent
 - → three-dimensional measurement of complex, red-hot forgings at forging-relevant temperatures (e. g. steel ϑ = 950...1250 °C)

Approach

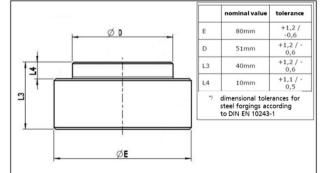
- → use of **blue laser light**
 - → red laser light on red-hot surfaces not detectable

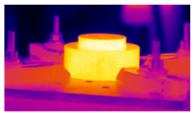
Preliminary tests with blue laser on red-hot component



Measurement of Hot Forgings

Development of Methodology using Blue Laser

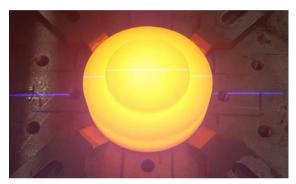

→ detection of form and dimensional deviations



- conception and implementation of a **measuring station** for $\vartheta_{part max} > 1000 \text{ }^{\circ}\text{C}$
 - sensor coupled with movement mechanism
 →reduction of the thermal load
 caused by heat radiation

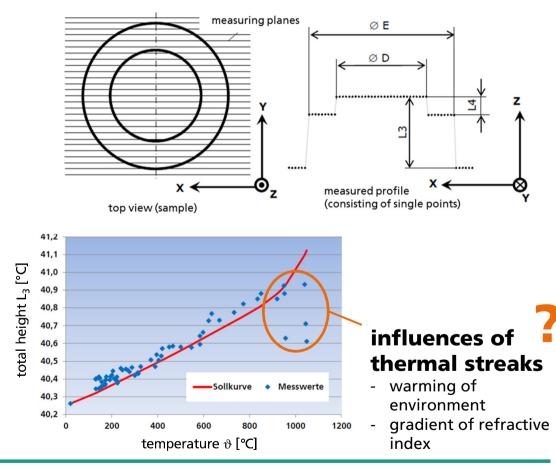
nevertheless: additional **heat protection** measures for **scanner** and **camera**

sample part made of Stellite \rightarrow no scale formation up to ϑ > 1200 °C


false-colour image taken with thermal camera (CMOS)

Measurement of Hot Forgings

Development of Methodology using Blue Laser


→ detection of form and dimensional deviations

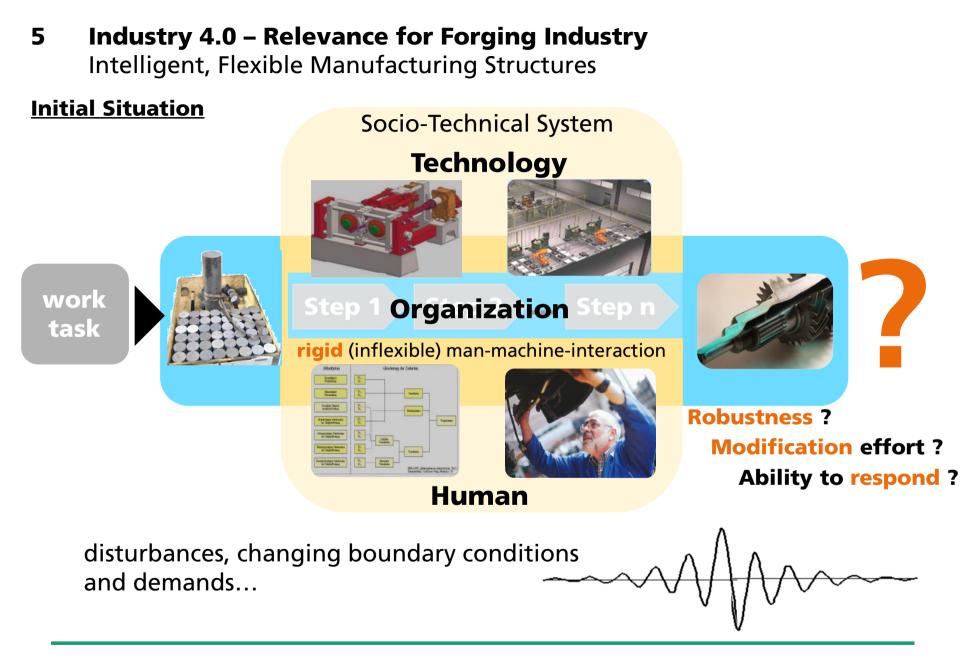
measurement with laser scanner

measurement with camera with decreasing temperatures additional lighting required

Measurement of Hot Forgings

Conclusions (performed study)

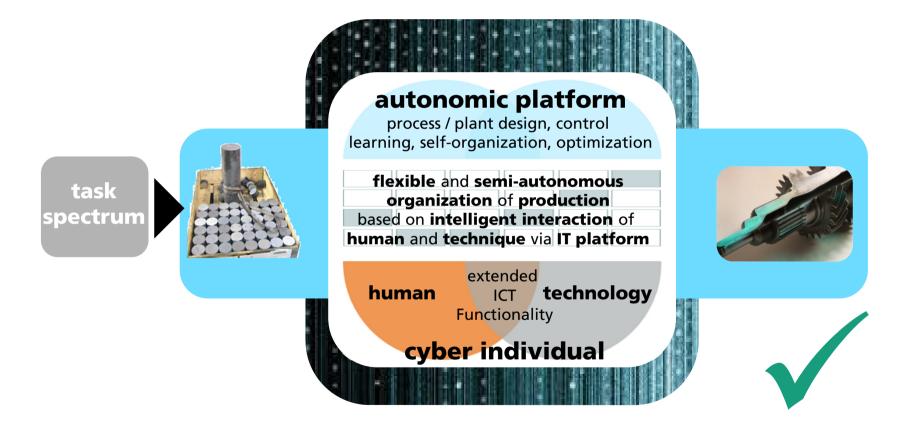
 scanner systems with blue laser
 suitable for measuring red-hot forgings (based on laser triangulation)


→ accuracy requirements can be guaranteed within large temperature range

- if ϑ > 950 °C: occurrence of physical effects
 - (generation of thermal streaks)
 - influencing of measuring results
 - minimization possible (based on suitable correction algorithm)

➔ Furthermore

- → **suitability** of **camera systems** for measuring
 - of hot forgings proven (2D system was used in finished study)
- → next step: evaluation of 3D camera systems regarding utilizability



5 Industry 4.0 – Relevance for Forging Industry Intelligent, Flexible Manufacturing Structures

New Demand

decentralized adaption, partially autonomous

5 Industry 4.0 – Relevance for Forging Industry Intelligent, Flexible Manufacturing Structures

Example: Process Route for Hollow Gearshafts (forming-based)

Intelligent, flexible, self-organizing processes and process chains

Challenges

crosslinking, monitoring, closed-loop control of

- manufacturing process / systems
- logistic processes
- transport systems

<u>Foci</u>

- → "qualification" of single steps / entire process route
- development and adaption of interfaces, monitoring / closed-loop control strategies (data acquisition, transfer, processing)
- → adaption / optimization of work organization / process design
- ➔ proof of process capability

Target: efficiency (costs, energy, resources), quality, part characteristics, lead time, load factor, ...

5 Industry 4.0 – Relevance for Forging Industry Intelligent, Flexible Manufacturing Structures

Future Implementation of Industry 4.0 Measures into

Forging Industry (especially SMEs)

Barriers / Restraints

- → scepticism about benefits (management, staff)
 - limited human resources
 - complex, hardly tangible topic
 - measure implementation connected with effort

→ production condition in forging plants

i = "Industry 4.0" solutions developed by Fraunhofer IWU

definition of real objectives accessible with manageable effort

(considering local conditions)

