THE FUTURE OF BENDING AUTOMATION

WELCOME to International Seminar on Forming Technology IMTMA

Steven Lucas – International Press Brake Product Manager

Main issues in bending technology

Correct measureCorrect angle

How to determine the bend allowance?

BA = - 2 x s DIN 6935 Database

- BA = 2 x s
- Theory of the neutral axis DIN6935
- Bend allowance database

BA = - 2 x s DIN 6935 Database

 $BA = -2 \times s$

It is assumed that the bend allowance (BA) is equally divided:

The gauging equals X = A - BA/2

Example: comparison determination BA

			Bend allowance				
Thickness	Die	Material	- S x 2	DIN 6935	Database		
1,5 mm	V12/78°	DC04	- 3,00	- 3,00	- 2,90		
1,5 mm	V08/78°	DCO4	- 3,00	- 2,80	- 2,70		
1,5 mm	V12/78°	X5CrNi18 10	- 3,00	- 3,00	- 3,10		
4 mm	V24/78°	S235JRG2	- 8,00	- 7,60	- 7,09		
4 mm	V30/78°	S235JRG2	- 8,00	- 7,90	- 7,26		
4 mm	V24/78°	X5CrNi18 10	- 8,00	- 7,60	-7,57		
4 mm	V30/78°	X5CrNi18 10	- 8,00	- 7,90	- 8,01		
6 mm	V30/78°	S235JRG2	- 12,00	- 11,20	- 10,35		
6 mm	V40/78°	S235JRG2	- 12,00	- 11,60	- 10,62		
6 mm	V30/78°	X5CrNi18 10	- 12,00	- 11,20	- 10,89		
6 mm	V40/78°	X5CrNi18 10	- 12,00	- 11,60	- 11,60		

Required measurement : position off the holes

3D Part > Unfolding, based on the BA database

Main issues in bending technology

Bending technology

Coinning

VAir Bending

Adaptive bending

Y-axis : depth in mm for 1 degree angle modification.

Y-as : diepte in mm voor een wijziging van 1 graad in hoek.

L'axe Y : profondeur en mm pour un changement de l'angle de 1 degré. Y-Achse : Tiefe in mm für eine Änderung von 1 Grad in Winkel.

	30°	45°	60°	75°	90°	105°	120°	135°	150°	165°
4	0,17	0,07	0,04	Ο,Ο3	0,02	0,02	0,02	0,01	0,01	0,01
6	0,26	0,11	0,07	0,05	0,04	0,03	0,03	С,ОЗ	0,03	0,03
8	0,36	0,14	0,08	0,06	0,05	0,04	0,04	ΕΟ,Ο	0,03	0,03
9	0,41	0,16	0,09	0,07	0,05	0,05	0,05	0,04	Ε0,03	0,03
10	0,45	0,18	0,10	0,08	0,05	0,05	0,05	0,05	0,05	0,04
12	0,54	0,22	0,13	0,08	0,07	0,05	0,05	0,05	0,05	0,05
14	0,61	0,24	0,15	0,10	0,08	0,07	0,06	0,06	0,06	0,06
15	0,66	0,26	0,16	0,11	0,08	0,08	0,07	0,07	0,07	0,06
16	0,71	0,28	0,16	0,12	0,09	0,08	0,07	0,07	0,07	0,07
18	0,81	0,32	0,19	0,13	0,11	0,09	0,08	0,08	0,07	0,07
20	0,90	0,36	0,21	0,15	0,11	0,10	0,09	0,09	0,09	0,08
22	1,00	0,40	0,23	0,16	0,13	0,11	0,10	0,09	0,09	0,09
24	1,09	0,44	0,25	0,17	0,14	0,11	0,10	0,10	0,10	0,10

Bending technology – Result Air Bending

Bending technology – Result of Adaptive Bending

⊗ LVD

Bending technology – Strain hardening

Why is bend allowance (BA) and bend radius (BR) dependent on material ?

Bending technology – The flow curve ('pull-test')

Bending technology

Bending technology

BENDING AUTOMATION

* TRENDS * CHALLENGES * SOLUTIONS

⊗ LVD

BENDING AUTOMATION TRENDS

BENDING AUTOMATION TRENDS

General industry trends impacting bending automation :

- Complex parts
- Complex assemblies
- ✤ Reduced batch size
- ✤ A lot of variety

12

✤ Shorter lead times

· 10

9

BENDING AUTOMATION TRENDS

Other trends impacting bending automation :

- Shortage of skilled labor
- Lack of robot programming knowledge
- Need for fast and easy programming
- Quality assurance during automated bending

Software solutions need to be able to handle:

- Simple, standard and complex parts
- Standard and complex assemblies
- Automated part and robot programming
- Elimination of 'Robot Teaching'

THERE ARE NEEDS FOR:

Automated or quick tool setups and Joblists to produce :

- ✤ A lot of part varieties
- Small batches
- Need to increase throughput

Universal part gripper :

- Reduce costs associated with multiple grippers
- Eliminate time taken to change grippers
- One flexible gripper with cups and clamps for a wide variation of parts

♦ LVD

The need to improve throughput due to:

- ✤ Short delivery times
- Stock reduction
- Minimizing work in progress
- Smaller batches
- Traceability

The need for real-time Adaptive Process Control to ensure:

- Process stability and consistency
- Quality Assurance

Automation that works in collaboration with the operator :

- Ability to run automated and manually with the automation cell
- Not all parts are suitable for automation
- Availability of operators on the market

Availability of virtual simulation and self- programming solutions that can:

- Fully offline program (in the office) both the Press Brake and Robot
- Easy and fast programming with automatic solutions
- Eliminate the need for advanced robot skills
- Eliminate lost time due to teaching of the robot

Controls need to be user friendly, intuitive and have self explaining User Interface because of:

- Shortage of skilled Labor
- Lack of programming knowledge

♦ LVD

BENDING AUTOMATION SOLUTIONS

BENDING AUTOMATION

SOLUTION : Bending Cell

Key features of Bending Cell

Affordable, Flexible and Fast "Art to Part" Automation:

- Flexible cell for automatic and manual operation
- Easy installation and setup
- Small footprint
- "Drag and Drop" Intelligent 'Self Programming'
- Full accessible cell for manual operation
- Flexible stacking of finished products on pallets
- Easy dropping of finished products in boxes
- Quick feeding of new parts in pallets
- Easy access for input and output of parts

⊗ LVD

Bending-CELL Easy and fast automated programming

- Full offline automated 'self- programming' of parts. No teaching and programming in workshop
- Programming of Press Brake with the bending programming system Offline Programming Software
- Easy programming of "standard" products with robot automation - Standard products are divided in families
- Automatic and interactive programming of gripper positions with the Robot Programming system
- Automatic calculation of robot trajectory with the robot programming system
- Virtual simulation of part bending with robot

Bending programming system

Robot programming system

VLVD

